Anzeige
1 Monat GRATIS testen, danach für nur 9,90€/Monat!
Startseite »

Diamant unter Druck

Technik|Digitales

Diamant unter Druck
14-07-16-diamant.jpg
Blick in die Laserkammer des NIF (Matt Swisher)
Diamant ist nicht nur ein begehrter Schmuckstein, er ist auch der härteste und kompakteste Zustand des Kohlenstoffs. Forscher gehen deshalb davon aus, dass Diamant nicht nur im irdischen Gestein, sondern auch im Inneren vieler Exoplaneten und sogar Sterne vorkommt. Dort aber ist der Druck unvorstellbar hoch. Er lag bisher weit außerhalb dessen, was Forscher auf der Erde erzeugen konnten. Doch mit Hilfe gebündelter Laserstrahlen haben US-Forscher nun erstmals Diamant auf Drücke von mehr als fünf Terapascal komprimiert – das ist 14 Mal mehr als im Kern unseres Planeten herrschen. Die dabei gemachten Beobachtungen liefern erste Anhaltspunkte dafür, ob die Modelle solcher Hochdruck-Bedingungen korrekt sind. Sie geben aber auch Aufschluss über das Innenleben von Gasriesen wie dem Jupiter oder von exotischen Diamantplaneten.

Im Jahr 2012 entdeckten Astronomen nur 41 Lichtjahre von uns entfernt einen ungewöhnlichen Planeten: Die Supererde 55 Cancri e umkreist zwar einen sonnenähnlichen Stern, hat aber eine völlig andere chemische Zusammensetzung als die Erde. Denn der Exoplanet besteht zu einem großen Teil aus Kohlenstoff, ein Drittel von ihm könnte sogar aus Diamant bestehen. Das klingt erstmal sensationell, ist aber für Astronomen nichts Unerwartetes: „Kohlenstoff ist das vierthäufigste Element im Kosmos und spielt daher eine potenziell wichtige Rolle in vielen Arten von Planeten“, erklären Ray Smith vom Lawrence Livermore National Laboratory in Kalifornien und seine Kollegen. Unter hohem Druck, wie er im Inneren massereicher Planeten herrscht, wird der Kohlenstoff zu Diamant komprimiert. Was aber im Kern dieser Riesen mit dem Diamant geschieht, lässt sich bisher nur mit Modellen und Theorien beschreiben. Denn diese Drücke von mehreren Terapascal waren bisher für Experimente unerreichbar. Smith und seine Kollegen haben nun jedoch das vermeintlich Unmögliche möglich gemacht.

Für ihr Experiment nutzten die Forscher den wahrscheinlich größten Laser der Welt: Eine Laserkammer an der US National Ignition Facility (NIF), in der 176 Laserstrahlen mit der Gesamtenergie von 2,2 Terawatt auf ein wenige Millimeter großes Ziel fokussiert werden können. Normalerweise dienen diese ungeheuren Energien dazu, Materialproben so stark zu komprimieren, dass eine Kernfusion eintritt. Einen prominenten Auftritt hatte die Laserkammer aber auch schon in Hollywood: Sie stellte im Film „Star Trek – Into Darkness“ den Warpkern des Raumschiffs Enterprise dar. Für die aktuelle Studie ging es den Forscher jedoch neben der Laserleistung um einen weiteren Vorteil der Anlage: Der Druck auf die Probe wird nach und nach durch mehrere Kompressionswellen erhöht. Dadurch heizt sich das Material nicht so stark auf und die Bedingungen entsprechen eher denen im Inneren von Planeten, wie die Forscher erklären.

Ein Druck wie im Kern des Saturn

Mit Hilfe dieser Anlage gelang es den Forschern, eine nur rund 150 Mikrometer große Diamantprobe auf fünf Terapascal zu komprimieren – dies entspricht dem 50 millionenfachen Druck der Erdatmosphäre. Erstmals wurde damit Diamant einem Druck ausgesetzt, wie er beispielsweise im Kern des Gasplaneten Saturn herrscht. „Unter solchen Bedingungen verändert sich die Materialstruktur und Chemie, selbst die Eigenschaften der Atome selbst könnten sich ändern“, erklären Smith und seine Kollegen. Wie sie berichten, entsprach das Verhalten des Diamants unter dem zunehmenden Druck relativ gut den theoretischen Modellen. Allerdings gab es im Experiment keine Anzeichen für einen oder mehrere Phasenübergänge des Diamants, wie es einige Modelle vorhersagen. Bei diesen Übergängen ändert sich die Kristallstruktur, was zu einer noch dichteren Packung der Atome führt und auch ihre Eigenschaften wandelt. Ob diese Übergänge im Versuch nur noch nicht nachgewiesen werden konnten oder tatsächlich nicht auftraten, muss noch geklärt werden.

Der Diamantversuch gibt aber auch Aufschluss über Innenleben und Größe von fernen Gasriesen und Diamantplaneten. Denn aus den Daten lässt sich ein Modell aufstellen, dass die Masse, den Druck im Inneren und den Radius solcher Planeten ins Verhältnis setzt. Für den Planeten 55 Cancri e kamen die Forscher dabei auf eine Größe, die bisherige Schätzungen von etwa dem Doppelten des Erdradius bestätigt. Ein weiterer, 2011 entdeckter Diamantplanet umkreist einen Pulsar in rund 4.000 Lichtjahren Entfernung. Ausgehend von ihren Daten errechneten Smith und seine Kollegen, dass dieser ferne Exot vermutlich 4,5 Mal so groß ist wie die Erde und dass in seinem Inneren der Druck von 148 Terapascal herrscht – 320 Mal so viel wie im Erdkern.

Anzeige

„Der einzige Weg, um die Bedingungen im Inneren so großer Planeten nachzubilden ist die hier von uns eingesetzte  Kompressionstechnik“, konstatiert Smith. Solche Experimente könnten daher viel dazu beitragen, mehr über Exoplaneten, aber auch über das Innenleben von Gasriesen wie Jupiter und Saturn zu erfahren. Gleichzeitig bieten sie neue Einblicke in das Verhalten von Materie unter Extrembedingungen.

Quelle:

© wissenschaft.de – Nadja Podbregar
Anzeige

Wissenschaftsjournalist Tim Schröder im Gespräch mit Forscherinnen und Forschern zu Fragen, die uns bewegen:

  • Wie kann die Wissenschaft helfen, die Herausforderungen unserer Zeit zu meistern?
  • Was werden die nächsten großen Innovationen?
  • Was gibt es auf der Erde und im Universum noch zu entdecken?

Hören Sie hier die aktuelle Episode:

Aktueller Buchtipp

Sonderpublikation in Zusammenarbeit  mit der Baden-Württemberg Stiftung
Jetzt ist morgen
Wie Forscher aus dem Südwesten die digitale Zukunft gestalten

Wissenschaftslexikon

♦ Ne|kro|bio|se  〈f. 19; unz.; Med.〉 langsames Absterben einzelner Zellen [<grch. nekros … mehr

Mi|no|ri|täts|trä|ger  〈Pl.; El.; in Halbleitern〉 Träger der zum Ausgleich der elektr. Ladungen nicht in ausreichender Zahl vorhandenen Ladungen, z. B. die positiv geladenen Fehlstellungen in n–Halbleitern; Ggs Majoritätsträger … mehr

Te|lo|pha|se  〈f. 19; Biochem.〉 Endphase der Kernteilung [<grch. telos … mehr

» im Lexikon stöbern
Anzeige
Anzeige
Anzeige