Anzeige
1 Monat GRATIS testen, danach für nur 9,90€/Monat!
Startseite »

Ein Schwarm aus tausend Robotern

Technik|Digitales

Ein Schwarm aus tausend Robotern
14-08-14-botswarm.jpg
Blick auf den Schwarm aus Kilobots (Foto: Michael Rubenstein, Harvard University)
Sie klein, aber sie sind viele: Das Erfolgsgeheimnis von Ameisen und anderen sozialen Insekten liegt in der Gruppe. Erst durch ihr Zusammenwirken schaffen die Insekten außerordentliche Bauwerke, überqueren Bäche und bilden komplexe Staaten. Dieses Prinzip – die Selbstorganisation vieler autonomer, aber einzeln eher einfacher Einheiten – haben US-Forscher nun auf die Spitze getrieben: Sie erschufen und testeten erstmals einen Schwarm aus 1024 autonomen Robotern. Durch simple Sensoren und einen Algorithmus gesteuert, bilden diese Roboter selbstständig verschiedenste Formen und Anordnungen – Buchstaben, Sterne oder den Umriss eines Schraubschlüssels. Dieser Tausend-Bot-Schwarm ist nach Ansicht der Forscher ein wichtiger Schritt hin zur Nachbildung der Schwarmintelligenz der Natur.

„In der Natur können Gruppen von Tausenden, Millionen oder sogar Milliarden von Einzeleinheiten sich zu einer Vielfalt von Formen zusammensetzen – und dies nur gesteuert durch lokale Wechselwirkungen“, erklären Michael Rubinstein und seine Kollegen von der Harvard University in Cambridge. In der Robotik wird versucht, diese Schwarmintelligenz technisch nachzuahmen: Einzelne Roboter erhalten dabei typischerweise nur wenige grundlegende Fähigkeiten – gehen, stoppen, Nachbarn erkennen und ähnliches. Ein Algorithmus gibt ihnen zudem einfache Handlungsanweisungen, die im Kollektiv umgesetzt dann zu einer Selbstorganisation des Schwarms führen. Bisher allerdings umfassen die meisten Bot-Schwärme nur 10 bis 50 Roboter, nur wenige erreichen mehr als 100, wie die Forscher erklären. Das Problem liegt in den Kosten: Je mehr die Roboter können, desto teurer wird es, sie in großer Stückzahl herzustellen. Das aber bedeutet, dass Roboterforscher ihre Algorithmen zur Selbstorganisation bisher nicht in größerem Maßstab ausprobieren können. „Wir können das Verhalten großer Roboterschwärme zwar simulieren, aber die Aussagekraft solcher Simulationen hat Grenzen“, sagt Koautorin Radhika Nagpal.

Primitiv, aber im Schwarm clever

Rubinstein und seine Kollegen sind daher einen anderen Weg gegangen: Sie produzierten extrem primitive, kleine Roboter, diese aber gleich in mehr als tausendfacher Stückzahl. Jeder einzelne dieser nur gut zwei Zentimeter kleinen „Kilobots“ besitzt nicht einmal Räder, sondern bewegt sich durch einen kleinen Vibrationsmotor auf drei dünnen Stelzen fort. Informationen über seine Umgebung erhält er nur über einen Infrarotsensor, der ihm die Anwesenheit von Artgenossen in der unmittelbaren Umgebung verrät. Jeder Kilobot wird durch einen Algorithmus geleitet, der im Prinzip nur drei Verhaltensanweisungen enthält: Bewege dich am Rand einer Gruppe entlang, halte dich möglichst eng an deine Artgenossen und bestimmte deine relative Position im Verhältnis zu den anderen. Zusätzlich liefert der Algorithmus die Information über die Form, die der Bot-Schwarm annehmen soll, und deren Position.

Der Selbstorganisationsprozess beginnt mit vier „Saat“-Robotern, die an den Rand der ungeordneten Robotergruppe gesetzt werden. Diese unbeweglichen Kilobots dienen als Startpunkt und Referenzort für einen Ecke der Zielform. Der Rest geschieht nun ganz von allein: Nach und nach gleiten immer mehr Kilobots am Rand der Gruppe entlang zu den Saatrobotern und bleiben stehen, wenn sie eine Position erreichen, die innerhalb der Zielform liegt. Durch diesen allmählichen Organisationprozess bilden die 1024 Kilobots innerhalb von zwölf Stunden die gewünschte Form – beispielsweise den Buchstaben „K“ oder einen fünfzackigen Stern. „In allen Experimenten entstanden die gewünschten Formen ohne menschliche Intervention“, betonen die Forscher. Selbst das Austauschen von Batterien oder eine Reprogrammierung waren nicht nötig.

Das kollektive Verhalten dieses Bot-Schwarms sei demnach bemerkenswert robust, so Rubinstein und seine Kollegen. Selbst wenn einzelne Roboter sich verirren, stecken bleiben oder kurzfristig aus der Bahn geraten, stoppt dies den Selbstorganisationsprozess nicht. Nach Ansicht der Forscher bilden Tests mit solchen kleinen, in Massenanfertigung produzierten Robotern einen wichtigen Schritt hin zur Schaffung noch größerer, intelligenterer Schwarmsysteme. „Wir werden künftig immer häufiger größere Gruppen von zusammenarbeitenden Robotern erleben – ob es sich um Hunderte handelt, die bei Umweltsanierungen oder Katastrophen helfen oder um Millionen von selbststeuernden Autos auf unseren Straßen“, so Nagpal. Zu verstehen, wie sich solche Systeme robust und sicher steuern lassen, werde daher immer wichtiger.

Anzeige

Quelle:

© wissenschaft.de – Nadja Podbregar
Anzeige

Wissenschaftsjournalist Tim Schröder im Gespräch mit Forscherinnen und Forschern zu Fragen, die uns bewegen:

  • Wie kann die Wissenschaft helfen, die Herausforderungen unserer Zeit zu meistern?
  • Was werden die nächsten großen Innovationen?
  • Was gibt es auf der Erde und im Universum noch zu entdecken?

Hören Sie hier die aktuelle Episode:

Aktueller Buchtipp

Sonderpublikation in Zusammenarbeit  mit der Baden-Württemberg Stiftung
Jetzt ist morgen
Wie Forscher aus dem Südwesten die digitale Zukunft gestalten

Wissenschaftslexikon

Pau|sen|zei|chen  〈n. 14〉 1 〈Mus.〉 Zeichen der Notenschrift für eine Pause 2 Zeichen (Melodie, Ticken o.  Ä.) eines Rundfunk– od. Fernsehsenders während der Pause zw. zwei Sendungen … mehr

Hy|po|tro|phie  〈f. 19〉 mangelhafte Ernährung (von Organen od. Muskeln); Ggs Hypertrophie … mehr

Spring|schwanz  〈m. 1u; Zool.〉 Angehöriger einer Ordnung ursprünglich flügelloser Insekten mit großer Sprunggabel, die von den Beinanlagen des 3. und 4. Hinterleibssegmentes gebildet wird: Collembola

» im Lexikon stöbern
Anzeige
Anzeige
Anzeige