Anzeige
Anzeige

Wahrig Wissenschaftslexikon

Iktus

Ik|tus  〈m.; –, – od. Ik|ten〉 1 Stoß, Schlag 2 〈Metrik〉 bes. starke Betonung, nachdrückliche Hebung 3 〈Med.〉 plötzl. auftretendes, schweres Krankheitsmerkmal [<lat. ictus ”Hieb, Stoß“]

Anzeige

DAMALS | Aktuelles Heft

Bildband DAMALS Galerie

Der Podcast zur Geschichte.

Geschichten von Alexander dem Großen bis ins 21. Jahrhundert. 2x im Monat reden zwei Historiker über ein Thema aus der Geschichte. In Kooperation mit DAMALS – Das Magazin für Geschichte.

Hören Sie hier die aktuelle Episode:

Anzeige

Wissenschaftslexikon

Viele Differentialgleichungen lassen sich mit dem Ansatz lösen, die gesuchte Funktion in Schwingungen (periodische Funktionen) unterschiedlicher Frequenz zu zerlegen. Diese Methode heißt Fourier-Analyse: man schreibt eine 2π-periodische Funktion F(x) als F(x)=f(eix), also als Funktion f:S1—->C, und entwickelt sie in eine Fourier-Reihe f(eix)= Σ aneinx (oder äquivalent in eine Reihe mit Summanden cos(nx) und sin(nx)). Die Koeffizienten kann man berechnen durch a_n=\frac{1}{2\pi}\int_{-\pi}^\pi f(x)e^{-inx}dx. Die Zuordnung n–>an ist eine Folge, also eine Funktion Z—->C. Fourierentwicklung gibt also eine Zuordnung zwischen Funktionen auf S1 und Funktionen auf Z, eine Dualität zwischen Z und S1.
Pontrjagin-Dualität liefert die Verallgemeinerung dieser Theorie auf beliebige lokalkompakte, abelsche Gruppen. Zu einer solchen Gruppe G betrachtet man die duale Gruppe \hat{G}:=Hom (G,S^1) (äquivalent: die Gruppe der irreduziblen Darstellungen) und kann dann jeder Funktion f\colon G\to{\bf C} die Fourier-Transformierte \hat{f}(\chi)=\int_G f(g)\overline{\chi}(g)dg zuordnen, womit man eine zur Fourier–Analyse analoge Theorie erhält.

Pontrjagin hatte als 14-jähriger bei der Explosion eines Gasofens sein Augenlicht verloren. Dank seiner Mutter, die ihm neben ihrer Arbeit als Näherin mathematische Bücher und topologische Arbeiten vorlas, machte er trotzdem Karriere. Noch als Student bewies er die allgemeine Version der Alexander-Dualität von Homologiegruppen: für eine abgeschlossene Teilmenge A\subset S^n hat man einen Isomorphismus H_i(A;G)\cong H_{n-i-1}(S^n- A;\hat{G}) für eine kompakte Gruppe G und ihr (diskretes) Dual, also die Gruppe aller irreduziblen Darstellungen, im abelschen Fall einfach \hat{G}:=Hom (G,S^1) . (Mit Alexander-Dualität kann man beispielsweise für einen Knoten unmittelbar die Homologiegruppen des Knotenkomplements berechnen, die insbesondere also nicht vom Knoten abhängen. Alexander hatte diesen Dualitätssatz für endliche Polyeder bewiesen, Alexandrow dann auf abgeschlossene Mengen verallgemeinert. Beide hatten aber nur Koeffizienten G=\hat{G}={\bf Z}/2{\bf Z} betrachtet.)
Pontrjagin formulierte auch als erster ein allgemeines Prinzip, in das alle bekannten topologischen Dualitätssätze paßten: wenn es zu zwei abelschen Gruppen A und B eine Abbildung AxB—->C in eine zyklische Gruppe C gibt, so daß zu jedem von Null verschiedenen Element aus A oder B eines aus der anderen Gruppe existiert, so dass das Paar nicht auf Null abgebildet wird, dann ist B dual zu A.
Damit erhält man zum Beispiel Poincaré-Dualität, indem man für die freien Anteile A von Hk(M;Z) und B von Hn-k(M;Z) die Schnittzahl und für die Torsionsanteile die Torsionsverschlingungszahl betrachtet. Ähnlich bekommt man Lefschetz-Dualität, also die Verallgemeinerung der Poincaré-Dualität auf Mannigfaltigkeiten mit Rand. Die Alexander-Dualität bekommt man, indem man die Verschlingungszahl betrachtet.

Bekannt wurde er aber dann aber für eine andere Dualitätstheorie, die mit den topologischen Dualitätssätzen nichts zu tun hatte. 1934 entwickelte er die später als Pontrjagin-Dualität bezeichnete abstrakte Theorie der Fourier-Analyse. Diese Theorie funktioniert für lokalkompakte, abelsche Gruppen G und für die mit Homomorphismen nach S1 gebildete duale Gruppe. (Die Homomorphismen nach haben S1 wie Homomorphismen nach R und anders als Homomorphismen nach Z die Eigenschaft, dass sich Homomorphismen einer Untergruppe von G auf ganz G fortsetzen lassen, was für Beweise zentral ist.)
Die duale Gruppe \hat{G} wird mit der schwächsten Topologie versehen, für die die durch \hat{f}(\chi):=\int_G f(g)\chi(g^{-1})d\mu_G(g) gegebene Transformation \hat{f}\colon\widehat{G}\to{\bf C} noch stetig ist.
Lokale Kompaktheit der Gruppe G ist notwendig, weil die Konstruktionen und Beweise ein invariantes Maß auf der Gruppe benötigen. Die Existenz und (bis auf Skalierung mit Konstanten) Eindeutigkeit eines invarianten Maßes μG auf einer lokalkompakten Gruppe G hatte Alfréd Haar in einer 1933 zwei Monate vor seinem Tod in Annals of Mathematics erschienenen Arbeit „Der Massbegriff in der Theorie der kontinuierlichen Gruppen“ bewiesen.

Anzeige

Im klassischen Fall G=S^1={\bf R}/2\pi{\bf Z} ist \hat{G}={\bf Z}, denn jede 1-dimensionale Darstellung ist von der Form \chi(e^{2\pi it})=e^{n2\pi it} für eine ganze Zahl n.
Allgemein ist das Dual einer kompakten Gruppe eine diskrete Gruppe und umgekehrt.
Pontrjagin bewies den Dualitätssatz, dass das Dual der dualen Gruppe immer G ist.
Beispielsweise ist im Fall der klassischen Fourier–Analyse nicht nur Z die duale Gruppe zu S1, sondern auch S1 die duale Gruppe zu Z.

Li|bi|do  〈a. [′–––] f.; –; unz.; Psych.〉 Begierde, Geschlechtstrieb [lat., ”Lust, Begierde“]

♦ In|spek|ti|on  〈f. 20〉 1 prüfende Besichtigung 2 Aufsicht, Überwachung ... mehr

» im Lexikon stöbern
Anzeige
Anzeige